top of page

Publications

2014

1. T.K Karamanos, A.P Kalverda, G.S Thompson, S.E Radford. Visualization of transient protein-protein interactions that promote or inhibit amyloid assembly. Mol. Cell 55, 214-226 (2014)

Highlighted as exceptional in F1000, featured in two press releases

​

2. N.N Louros, N.Petronikolou, T.K Karamanos, P. Cordopatis, V.A Iconomidou, S.J Hamodrakas. Structural studies of 'aggregation-prone' peptide analogues of teleostean egg chorion ZPB proteins. Biopolymers 102, 427-436 (2014)

​

3. C.J Sarell, T.K Karamanos, S.J White, D.J Bunka, A.P Kalverda, G.S Thompson, A.M Barker, P.G Stockley, S.E Radford. Distinguishing closely-related amyloid precursors using an RNA aptamer. J. Biol. Chem. 289, 26859-26871 (2014)

2015

4. T.K Karamanos*, A.P Kalverda, G.S Thompson, S.E Radford*. Mechanisms of amyloid formation revealed by solution NMR. Progr. Nucl. Magn. Res. Spec. 88-89, 86-104 (2015)

*Corresponding authors​

​

5. W.K Tipping, T.K Karamanos , T. Jakhria, G.M Iadanza, G.S Goodchild, R. Tuma, N.A Ranson, E.R Hewitt, S.E Radford. pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. PNAS 112, 5691-5696 (2015) 

2016

6. T.K Karamanos, C.Pashley, A.P Kalverda, G.S Thompson, M. Mayzel, V. Orekhov, S.E Radford. A population shift between sparsely populated folding intermediates determines amyloigenicity. JACS 138 (19), 6271-6280 (2016)

​

7. Dobson et al., . Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci. Rep. 6, 38644 (2016) 

2018

8. M.G. Iadanza, R. Silvers, J. Boardman, H.I. Smith, T.K. Karamanos, G. Debelouchina, Y. Su, R.G. Griffin, N.A. Ranson and S.E. Radford. The structure of a β2-microglobulin fibril suggests a molecular basis for amyloid polymorphism. Nature Coms, 9 (1), 4517, (2018)

​

9. E.M Martin, M.P Jackson, M. Gamerdinger, K. Gense, T.K Karamanos, J.R Humes, E. Deuerling, A.E Ashcroft, S.E Radford. Conformational flexibility within the nascent polypeptide–associated complex enables its interactions with structurally diverse client proteins. J. Biol. Chem., 293 (22), 8554-8568, (2018)

​

10. C.P.A Doherty, L.M Young, T.K Karamanos, H.I Smith, M.P Jackson, S.E Radford, D.J Brockwell. A peptide-display protein scaffold to facilitate single molecule force studies of aggregation-prone peptides. Protein Sci, 27 (7), 1205-1217, (2018)

​

11. P. Knight, T.K. Karamanos, S.E. Radford, A.E. Ashcroft. Identification of a novel site of interaction between ataxin-3 and the amyloid aggregation inhibitor polyglutamine binding protein 1. Europ. J. Mass Spec, 24(1), 129-140, (2018)

2019

12. N Benseny-Cases, T.K Karamanos, C.L Hoop, J. Baum, S.E Radford. Extracellular Matrix Components Modulate Different Stages in β2-microglobulin amyloid formation J. Biol. Chem, 294 (24), 9392-9401, (2019)

​

13. T.K Karamanos, M.P. Jackson, G.S Thompson, A.N Calabrese, E.E Cawood, E.W Hewitt, A.P Kalverda, S. E. Radford. Structural Mapping of Oligomeric Intermediates in an Amyloid Assembly Pathway Elife, 8, e46574, (2019)

​

14. T.K Karamanos, V. Tugarinov, G.M Clore. Unravelling the Structure and Dynamics of the Human DNAJB6b Chaperone Reveals Insights into Hsp40 Mediated Proteostasis. Proc. Nat. Acad. Sci. 116 (43), 21529-21538, (2019)

2020

15. E Cawood, N Guthertz, J Ebo, T Karamanos, SE Radford FRS, A Wilson. Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules. J. Am. Chem. Soc (accepted 2020)

​

16. E.E Cawood, T. K Karamanos, A.J Wilson, S.E Radford. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophysical Chemistry (accepted, 2020)

​

17. A. N. Calabrese, B.Schiffrin, M.A Watson, T. K. Karamanos, M. Walko, J.R Humes, J. E Horne, P. White, A.J Wilson, A.C Kalli, R. Tuma, A.E Ashcroft, D.J Brockwell, S.E Radford. Inter-domain dynamics in the chaperone SurA and multi-site binding to its unfolded outer membrane protein clients. Nat. Comms, 11(1), 1-16 (2020)

​

18. V Tugarinov, TK Karamanos, GM Clore. Optimized selection of slow-relaxing 13C transitions in methyl groups of proteins: application to relaxation dispersion. Journal of Biomolecular NMR, 1-8 (2020)

​

19. V. Tugarinov, TK Karamanos, GM Clore. Magic-Angle-Pulse Driven Separation of Degenerate 1H Transitions in Methyl Groups of Proteins: Application to Studies of Methyl Axis Dynamics. ChemPhysChem 21, 1-6 (2020)

​

20. T.K Karamanos, V. Tugarinov, G.M Clore. Determining Methyl Side-Chain Conformations in a CS-Rosetta Model Using Methyl 1H-13C Residual Dipolar Couplings. J. Biomol. NMR, 74(2), 111-118, (2020)

 

21. V. Tugarinov, T.K Karamanos, A.Ceccon, G.M Clore. Optimized NMR Experiments for the Isolation of I=1/2 Manifold Transitions in Methyl Groups of Proteins. ChemPhysChem, 21, 23 (2020)

​

22. T.K Karamanos, V. Tugarinov, G.M Clore. A S/T motif controls reversible oligomerization of the Hsp40 chaperone DNAJB6b, through subtle reorganization of a β-sheet backbone. PNAS (in press-2020)

bottom of page